Total Synthesis of (\pm)-Butyl Ester of Rosmarinic Acid

Long Jiang HUANG, De Quan YU*
Institute of Materia Medica, Chinese Academy of Medical Sciences \&Peking Union Medical College, Beijing 100050

Abstract: (\pm)-Butyl ester of rosmarinic acid $\mathbf{1}$ was synthesized by 5 -step reactions through the two key intermediates 2 and 3, the total yield was 23.9% and 25.1%, respectively.

Keywords: Butyl ester of rosmarinic acid, piperonal.

Rosmarinic acid, a well-known natural product firstly isolated from rosemary by Scarpati and Oriente in 1958^{1}, possesses various kinds of biological activities such as antioxidant ${ }^{2}$ and antibacterial ${ }^{3}$. Recently, the synthesis and biological activities of related compounds of rosmarinic acid have received much attention, such as 4 , 4^{\prime}-O-di- β-Dglucopyranosyl rosmarinic acid ${ }^{4}$, methyl ester of rosmarinic acid ${ }^{5-6}$ and rabdosiin ${ }^{7}$.

Butyl ester of rosmarinic acid 1 (Scheme 1) was isolated from Isodon oresbius in 1999^{8}. However, there was no report of synthesis and biological activities of this compound. In order to study its biological activities, a new short route for its synthesis was designed (Scheme 1).

Scheme 1

$1 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$
$2 \mathrm{R}_{1}, \mathrm{R}_{2}=-\mathrm{CH}_{2}-, \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{Bn}$
$3 \mathrm{R}_{1}, \mathrm{R}_{2}=-\mathrm{CH}_{2}-, \mathrm{R}_{3}, \mathrm{R}_{4}=-\mathrm{CH}_{2}-$

[^0]Scheme 2 Synthesis of the intermediate 8

Scheme 3 Synthesis of intermediates 11 and 12

Scheme 4

$$
\begin{aligned}
& \mathbf{8}+\mathbf{1 1} \xrightarrow[91 \%]{\mathrm{g}} \mathbf{2} \\
& \mathbf{8}+\mathbf{1 2} \underset{93 \%}{\mathrm{~g}} \mathbf{3}
\end{aligned} \quad \mathbf{2} \underset{61.9 \%}{\mathrm{~h}} \mathbf{1} \underset{63.5 \%}{\stackrel{\mathrm{i}}{\longrightarrow}} \mathbf{3}
$$

Regents and conditions: a) aceturic acid, $\left.\mathrm{Ac}_{2} \mathrm{O}, \mathrm{NaOAc}, 120^{\circ} \mathrm{C}, 5 \mathrm{~h} ; \mathrm{b}\right) \mathrm{HCl}, 100^{\circ} \mathrm{C}, 3 \mathrm{~h}$, then $\mathrm{Zn} / \mathrm{Hg}, \mathrm{HCl}, 4 \mathrm{~h}$; c) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, n-\mathrm{BuOH}, 24 \mathrm{~h}$; d) $\mathrm{K}_{2} \mathrm{CO}_{3}$, ethanol, $\mathrm{PhCH} \mathrm{Cl}_{2} \mathrm{Cl}$, reflux, 5 h ; e) malonic acid, pyridine, piperidine, $110^{\circ} \mathrm{C}, 4 \mathrm{~h}$; f) malonic acid, pyridine, piperidine, $110^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathrm{g}$) DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 10 \mathrm{~h}$; h) $\mathrm{BBr}_{3},-78^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; i) $\mathrm{BBr}_{3},-78^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

The key step is the synthesis of the intermediate $\mathbf{8}$ which was prepared from piperonal 4 as shown in Scheme 2. According to classic Erlenmeyer-Plöchl method ${ }^{9}$, piperonal 4 reacted with excess of aceturic acid 5 in the presence of anhydrous NaOAc in $\mathrm{Ac}_{2} \mathrm{O}$ to give azlactone $\mathbf{6}$ as slight yellow crystals. We adopted "one-pot" procedure in which 6 was refluxed with $3 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid, and then zinc amalgam was added to give 7. 8 was obtained by esterification of 7 with $n-\mathrm{BuOH}$ in 78% yield.

The other two intermediates $\mathbf{1 1}$ and $\mathbf{1 2}$ were prepared from 3, 4-dihydroxy benzaldehyde 9 and 4 as shown in Scheme 3. 9 was treated with benzyl chloride to afford 10. 10 or $\mathbf{4}$ was condensed with malonic acid to yield the intermediate $\mathbf{1 1}$ or 12, respectively.

The title compound $\mathbf{1}$ was prepared from the intermediates 2 and $\mathbf{3}$ as shown in Scheme 4. Esterification of $\mathbf{8}$ with $\mathbf{1 1}$ and $\mathbf{1 2}$ gave $\mathbf{2}$ and 3, which were treated with BBr_{3} to give 1. Benzyl can be more easily removed than methylene in the above
procedure.
The mechanism of formation of 7 from 6 can be postulated as shown in Scheme 5. The azlactone 6 was treated with $0.2 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ to afford the enamine intermediate 13. 13 can be easily hydrolyzed with $3 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ to afford the intermediate $\mathbf{1 4}$; it was reduced to give the intermediate 7.

In summary, we have presented a concise approach of preparation of $(\pm)-\mathbf{1}$; the synthetic route from 2 is more facile than from 3, because it is more amenable to large-scale synthesis. Biological evaluation and asymmetric synthesis of $\mathbf{1}$ are in progress.

Scheme 5

References and Notes

1. M. L. Scarpati, G. Oriente, Ricerca Sci., 1958, 28, 2329.
2. J. H. Chen, C.T. Ho, J. Agric. Food Chem., 1997, 45, 2374.
3. M. Kuhnt, A. Probstle, H. Rimpier, R. Bauer, M. Heinrich, Planta Med., 1995, 61, 227.
4. T. Satake, K. Kamiya, Y. Saiki, et al, Chem. Pharm. Bull., 1999, 47, 1444.
5. T. Motoyuki, O. Yasuyuki, Planta Med., 1998, 64, 555.
6. E. Reimann, H. J. Mass, T. Pflug, Monatsh. Chem., 1997, 128, 995.
7. D. E. Bogucki, J. L. Charlton, Can. J. Chem., 1997, 75, 1783.
8. H. Huang, Q.R. Chao, R.X. Tan, Planta Med., 1999, 65, 92.
9. H. E. Carter, Org. Reactions, 1946, 3, 198.
10. Spectral data of compound 2: ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 7.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}$, $=C H-), 7.49-7.31(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 7.14$ (d, 1H, J=2.0 Hz, ArH), 7.08 (dd, 1H, J=8.4 Hz, 2.0 $\mathrm{Hz}, \mathrm{ArH}$), 6.92 (d, 1H, J=8.4 Hz, ArH), 6.78 (d, 1H, J=1.4 Hz, ArH), 6.74 (d, 1H, J=8.0 Hz, ArH), 6.70 (dd, 1H, J=8.0 Hz, 1.4 Hz, ArH), 6.30 (d, 1H, J=15.9 Hz, =CH-), 5.93 (s, 2H, $\mathrm{OCH}_{2} \mathrm{O}$), $5.30(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHO}-), 5.20\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.19\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.16$ (t, $\left.2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz},-\mathrm{OCH}_{2}-\right), 3.12\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}\right), 1.65-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.28$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $0.92\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1743, 1716, 1634, 1596; EI-MS: $m / z 608\left(\mathrm{M}^{+}, 0.2\right)$, 91 (100); HREI-MS: $m / z 608.2457$ (calcd. for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{O}_{8}$, 608.2410).
11. Spectral data of compound 3: ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 7.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}$, $=\mathrm{CH}-), 7.03-6.68(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 6.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz},=\mathrm{CH})$), $5.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.91$ (s, 2H, OCH ${ }_{2} \mathrm{O}$), 5.27 (t, $\left.1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHO}-\right), 4.13\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-\right), 3.11(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}\right), 1.67-1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.38-1.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, CH_{3}); EI-MS: m/z $440\left(\mathrm{M}^{+}, 1\right), 248(89), 192$ (100), $135(45)$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1743, 1716, 1629, 1601. HREI-MS: $m / z 440.1484$ (calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{8}, 440.1471$).
12. Spectral data of compound $\mathbf{1}:{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}, \delta \mathrm{ppm}\right): 7.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}$, H-7), 7.06 (d, 1H, J=1.8 Hz, H-2), 7.04 (dd, 1H, J=7.8 Hz, 1.8Hz, H-6), 6.77 (d, 1H, J=7.8 Hz, H-5), 6.65 (d, 1H, J=1.8 Hz, H-2'), 6.63 (d, 1H, J=7.8 Hz, H-5'), 6.49 (dd, 1H, J=7.8 Hz,
1.8 Hz, H-6'), 6.26 (d, 1H, J=15.9 Hz, H-8), 5.08 (t, 1H, J=6.6 Hz, H-8'), 4.03 (t, 2H, J=6.0 $\left.\mathrm{Hz}, \mathrm{H}-1^{\prime \prime}\right), 2.95$ (d, 2H, J=6.6 Hz, H-7'), 1.52-1.38 (m, 2H, H-2'), 1.36-1.28 (m, 2H, H-3'), $0.84\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta \mathrm{ppm}\right): 169.5$ (C-9'), 165.9 (C-9), 148.6 (C-4), 146.3 (C-3), 145.5 (C-7), 144.9 (C-3'), 144.1 ($\left.\mathrm{C}-4^{\prime}\right), 125.6\left(\mathrm{C}-1^{\prime}\right), 125.3$ (C-1), 121.7 (C-6), 120.1 (C-6'), 116.7 (C-2'), 115.7 (C-5), 115.4 (C-5'), 114.9 (C-2), 112.9 (C-8), 72.9 (C-8'), 64.4 (C-1"), 36.2 (C-7'), $30.0\left(\mathrm{C}-2^{\prime \prime}\right), 18.4\left(\mathrm{C}-3^{\prime \prime}\right), 13.5\left(\mathrm{C}-4^{\prime \prime}\right)$; IR (KBr , $\left.\mathrm{cm}^{-1}\right): 3379,1716,1604 ;$ FAB-MS: $\mathrm{m} / \mathrm{z} 417\left(\mathrm{M}^{+}+1,0.1\right), 163(100)$; HRFAB-MS: m / z $417.1534[\mathrm{M}+\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{8}, 417.1549$).

Received 12 July, 2004

[^0]: * E-mail: dqyu@imm.ac.cn

